Công Nghệ Trí Tuệ Nhân Tạo La Gì

Công Nghệ Trí Tuệ Nhân Tạo La Gì

Trong những năm qua, trí tuệ nhân tạo đã trải qua nhiều chu kỳ phát triển. Mới đây, công cụ Chat GPT của OpenAI ra đời đánh dấu một bước ngoặt lớn, ngay cả với những người còn hoài nghi về công nghệ này.

Trí tuệ nhân tạo ứng dụng trong y tế

Hiện nay, AI được ứng dụng rộng rãi trong lĩnh vực chăm sóc sức khỏe con người với mục tiêu chung là cải thiện kết quả điều trị cho bệnh nhân và giảm chi phí.

Một trong những ứng dụng chính là sử dụng mô hình học máy được đào tạo trên các tập dữ liệu y tế lớn để hỗ trợ chuyên gia y tế đưa ra chẩn đoán nhanh, chính xác hơn.

Nguồn dữ liệu khổng lồ về hình ảnh, bệnh lý, chỉ số cơ thể,… sẽ được dán nhãn, nhập vào máy tính, sắp xếp, xử lý,… Từ đó, máy tính sẽ nhận diện, phân loại và đưa ra chẩn đoán dựa trên tình trạng bệnh nhân.

Một ứng dụng nổi bật khác của AI trong y tế có thể kể đến nghiên cứu và phát triển thuốc chữa bệnh. Đây là quá trình vô cùng tốn kém, mất rất nhiều thời gian. Nhờ áp dụng thành công AI vào các giai đoạn, quá trình nghiên cứu sẽ được tối ưu chi phí, thời gian và mang lại hiệu quả cao hơn.

Ngoài ra, AI còn được ứng dụng trong phân tích dữ liệu sức khỏe, quản lý hồ sơ y tế, y tá ảo, khám chữa bệnh từ xa,...

Xem thêm bài viết: Trí tuệ nhân tạo (AI) trong Y tế - Chăm sóc sức khỏe

Sự phát triển của trí tuệ nhân tạo đã góp phần làm thay đổi cách thức tiếp cận khách hàng mục tiêu, cải thiện trải nghiệm khách hàng, lập kế hoạch chiến lược và ra quyết định.

Nhờ vào công nghệ AI, doanh nghiệp cung cấp quảng cáo vào đúng thời điểm, đúng đối tượng tiềm năng dựa trên việc phân tích đặc điểm nhân khẩu học, thói quen, hành vi và nội dung mà khách hàng quan tâm, tìm kiếm. Từ đó, những gợi ý được đưa ra theo cách cá nhân hóa, phù hợp với từng khách hàng.

Trợ lý ảo và chatbot thông minh cũng được triển khai trên trang web hoặc trang thương mại điện tử của doanh nghiệp nhằm cung cấp dịch vụ chăm sóc khách hàng 24/7, trả lời câu hỏi thường gặp.

Ngoài ra, doanh nghiệp cũng đang khám phá khả năng vô tận của những công cụ AI tạo sinh như ChatGPT để tự động hóa các tác vụ như soạn thảo và tóm tắt văn bản, sáng tạo nội dung, thiết kế, đưa ra ý tưởng sản phẩm và lập trình máy tính.

Ứng dụng trí tuệ nhân tạo trong thực tiễn

Ở các thành phố thông minh hiện nay, AI được sử dụng để nâng cao hiệu quả quản lý, vận hành và trải nghiệm người dùng trong nhiều lĩnh vực: Giao thông, chuyển đổi số cơ quan nhà nước, giáo dục, y tế, sản xuất kinh doanh, nghệ thuật, sáng tạo nội dung,...

AI trong phát triển phần mềm và CNTT

AI được sử dụng để tự động hóa nhiều quy trình trong phát triển phần mềm, DevOps và công nghệ thông tin (CNTT).

Ví dụ, công cụ AIOps cho phép bảo trì dự đoán môi trường CNTT bằng cách phân tích dữ liệu hệ thống. Từ đó, sự cố tiềm ẩn được dự báo trước khi chúng xảy ra. Các công cụ giám sát hỗ trợ AI cũng cảnh báo những bất thường tiềm ẩn theo thời gian thực dựa trên dữ liệu trong quá khứ.

Một số công cụ AI tạo sinh như GitHub Copilot và Tabnine cũng được sử dụng phổ biến để tạo mã ứng dụng dựa trên lời nhắc bằng ngôn ngữ tự nhiên (NLP - Natural Language Processing).

Mặc dù những công cụ này đã cho thấy triển vọng và thu hút sự quan tâm của các lập trình viên, nhưng chúng không có khả năng thay thế hoàn toàn kỹ sư phần mềm. Thay vào đó, chúng đóng vai trò là công cụ hỗ trợ năng suất, tự động hóa các tác vụ lặp đi lặp lại và viết mã mẫu.

Không thể phủ nhận, công cụ AI cung cấp một loạt chức năng mới cho doanh nghiệp. Câu hỏi đặt ra là, việc sử dụng AI có mang lại ảnh hưởng tiêu cực và hệ lụy nào hay không?

Dù tốt hay xấu, các hệ thống AI phản ánh những gì chúng đã học được, nghĩa là những thuật toán này phụ thuộc rất nhiều vào dữ liệu mà chúng được đào tạo. Kho dữ liệu này do con người tập hợp và đưa vào mô hình, do đó có thể tồn tại sự thiên vị và cần theo dõi chặt chẽ.

Một vài thách thức về mặt đạo đức của AI bao gồm:

Sự thiên vị do thuật toán được đào tạo không đúng cách và định kiến ​​hoặc sự giám sát không đúng cách của con người.

Lạm dụng AI tạo ra nội dung giả mạo, lừa đảo và những nội dung độc hại khác.

Mối quan ngại về mặt pháp lý, bao gồm vấn đề bản quyền, bôi nhọ,...

Gia tăng tỷ lệ thất nghiệp do việc sử dụng AI ngày càng lớn để tự động hóa các nhiệm vụ tại nơi làm việc.

Mối quan ngại về quyền riêng tư dữ liệu, đặc biệt là trong các lĩnh vực như ngân hàng, chăm sóc sức khỏe và pháp lý liên quan đến dữ liệu cá nhân nhạy cảm.

Xem thêm bài viết: Những vấn đề đạo đức trong trí tuệ nhân tạo (AI)

Nhìn chung, trí tuệ nhân tạo đã và đang cách mạng hóa nhiều ngành nghề, lĩnh vực. Tuy nhiên, công nghệ này không thể thay thế hoàn toàn con người mà chỉ hỗ trợ thực hiện công việc, nhiệm vụ một cách hiệu quả hơn.

https://www.techtarget.com/searchenterpriseai/definition/AI-Artificial-Intelligence

Trong khoa học máy tính, trí tuệ nhân tạo hay AI (tiếng Anh: artificial intelligence), đôi khi được gọi là trí thông minh nhân tạo, là trí thông minh được thể hiện bằng máy móc, trái ngược với trí thông minh tự nhiên của con người. Thông thường, thuật ngữ "trí tuệ nhân tạo" thường được sử dụng để mô tả các máy móc chủ(hoặc máy tính) có khả năng bắt chước các chức năng "nhận thức" mà con người thường phải liên kết với tâm trí, như "học tập" và "giải quyết vấn đề".[2][3]

Khi máy móc ngày càng tăng khả năng, các nhiệm vụ được coi là cần "trí thông minh" thường bị loại bỏ khỏi định nghĩa về AI, một hiện tượng được gọi là hiệu ứng AI.[4] Một câu châm ngôn trong Định lý của Tesler nói rằng "AI là bất cứ điều gì chưa được thực hiện."[5] Ví dụ, nhận dạng ký tự quang học thường bị loại trừ khỏi những thứ được coi là AI, đã trở thành một công nghệ thông thường.[6] Khả năng máy hiện đại thường được phân loại như AI bao gồm thành công hiểu lời nói của con người, cạnh tranh ở mức cao nhất trong trò chơi chiến lược (chẳng hạn như cờ vua và Go),[7] xe hoạt động độc lập, định tuyến thông minh trong mạng phân phối nội dung, và mô phỏng quân sự.

Trí tuệ nhân tạo có thể được phân thành ba loại hệ thống khác nhau: trí tuệ nhân tạo phân tích, lấy cảm hứng từ con người và nhân tạo.[8] AI phân tích chỉ có các đặc điểm phù hợp với trí tuệ nhận thức; tạo ra một đại diện nhận thức về thế giới và sử dụng học tập dựa trên kinh nghiệm trong quá khứ để thông báo các quyết định trong tương lai. AI lấy cảm hứng từ con người có các yếu tố từ trí tuệ nhận thức và cảm xúc; hiểu cảm xúc của con người, ngoài các yếu tố nhận thức và xem xét chúng trong việc ra quyết định. AI nhân cách hóa cho thấy các đặc điểm của tất cả các loại năng lực (nghĩa là trí tuệ nhận thức, cảm xúc và xã hội), có khả năng tự ý thức và tự nhận thức được trong các tương tác.

Trí tuệ nhân tạo được thành lập như một môn học thuật vào năm 1956, và trong những năm sau đó đã trải qua nhiều làn sóng lạc quan,[9][10] sau đó là sự thất vọng và mất kinh phí (được gọi là " mùa đông AI "),[11][12] tiếp theo là cách tiếp cận mới, thành công và tài trợ mới.[10][13] Trong phần lớn lịch sử của mình, nghiên cứu AI đã được chia thành các trường con thường không liên lạc được với nhau.[14] Các trường con này dựa trên các cân nhắc kỹ thuật, chẳng hạn như các mục tiêu cụ thể (ví dụ: " robot học " hoặc "học máy"),[15] việc sử dụng các công cụ cụ thể ("logic" hoặc mạng lưới thần kinh nhân tạo) hoặc sự khác biệt triết học sâu sắc.[16][17][18] Các ngành con cũng được dựa trên các yếu tố xã hội (các tổ chức cụ thể hoặc công việc của các nhà nghiên cứu cụ thể).[14]

Lĩnh vực này được thành lập dựa trên tuyên bố rằng trí thông minh của con người "có thể được mô tả chính xác đến mức một cỗ máy có thể được chế tạo để mô phỏng nó".[19] Điều này làm dấy lên những tranh luận triết học về bản chất của tâm trí và đạo đức khi tạo ra những sinh vật nhân tạo có trí thông minh giống con người, đó là những vấn đề đã được thần thoại, viễn tưởng và triết học từ thời cổ đại đề cập tới.[20] Một số người cũng coi AI là mối nguy hiểm cho nhân loại nếu tiến triển của nó không suy giảm.[21] Những người khác tin rằng AI, không giống như các cuộc cách mạng công nghệ trước đây, sẽ tạo ra nguy cơ thất nghiệp hàng loạt.[22]

Trong thế kỷ 21, các kỹ thuật AI đã trải qua sự hồi sinh sau những tiến bộ đồng thời về sức mạnh máy tính, dữ liệu lớn và hiểu biết lý thuyết; và kỹ thuật AI đã trở thành một phần thiết yếu của ngành công nghệ, giúp giải quyết nhiều vấn đề thách thức trong học máy, công nghệ phần mềm và nghiên cứu vận hành.[13]

Tư tưởng có khả năng sinh vật nhân tạo xuất hiện như các thiết bị kể chuyện thời cổ đại,[23] và đã được phổ biến trong tiểu thuyết, như trong Frankenstein của Mary Shelley hay RUR (máy toàn năng Rossum) của Karel Capek.[24] Những nhân vật này và số phận của họ nêu ra nhiều vấn đề tương tự hiện đang được thảo luận trong đạo đức của trí tuệ nhân tạo.[20]

Nghiên cứu về lý trí cơ học hoặc "chính thức" bắt đầu với các nhà triết học và toán học thời cổ đại. Nghiên cứu về logic toán học đã dẫn trực tiếp đến lý thuyết tính toán của Alan Turing, người cho rằng một cỗ máy, bằng cách xáo trộn các ký hiệu đơn giản như "0" và "1", có thể mô phỏng bất kỳ hành động suy luận toán học nào có thể hiểu được. Tầm nhìn sâu sắc này, cho thấy máy tính kỹ thuật số có thể mô phỏng bất kỳ quá trình suy luận hình thức nào, đã được gọi là luận án Church-Turing.[25] Cùng với những khám phá đồng thời về sinh học thần kinh, lý thuyết thông tin và điều khiển học, điều này khiến các nhà nghiên cứu cân nhắc khả năng xây dựng bộ não điện tử. Turing đã đề xuất rằng "nếu một con người không thể phân biệt giữa các phản hồi từ một máy và một con người, máy tính có thể được coi là 'thông minh'.[26] Công việc đầu tiên mà bây giờ được công nhận là trí tuệ nhân tạo là thiết kế hình thức "tế bào thần kinh nhân tạo" do McCullouch và Pitts đưa ra năm 3500.

Các nhà nghiên cứu đầu tiên đã phát triển các thuật toán bắt chước theo lý luận từng bước mà con người sử dụng khi giải quyết các câu đố hoặc đưa ra các phương pháp loại trừ logic.[27] Vào cuối những năm 1980 và 1990, nghiên cứu về AI đã phát triển các phương pháp xử lý thông tin không chắc chắn hoặc không đầy đủ, sử dụng các khái niệm từ xác suất và kinh tế.[28]

Đối với những vấn đề khó, các thuật toán bắt buộc phải có phần cứng đủ mạnh để thực hiện phép tính toán khổng lồ - để trải qua "vụ nổ tổ hợp": lượng bộ nhớ và thời gian tính toán có thể trở nên vô tận nếu giải quyết một vấn đề khó. Mức độ ưu tiên cao nhất là tìm kiếm các thuật toán giải quyết vấn đề.[29]

Con người thường sử dụng các phán đoán nhanh và trực quan chứ không phải là phép khấu trừ từng bước mà các nghiên cứu AI ban đầu có thể mô phỏng.[30] AI đã tiến triển bằng cách sử dụng cách giải quyết vấn đề "biểu tượng phụ": cách tiếp cận tác nhân được thể hiện nhấn mạnh tầm quan trọng của các kỹ năng cảm biến động đến lý luận cao hơn; nghiên cứu mạng thần kinh cố gắng để mô phỏng các cấu trúc bên trong não làm phát sinh kỹ năng này. Các phương pháp tiếp cận thống kê đối với AI bắt chước khả năng của con người.

Trí tuệ nhân tạo (AI) chia thành hai trường phái tư duy: Trí tuê nhân tạo truyền thống và trí tuệ tính toán.

Trí tuê nhân tạo truyền thống hầu như bao gồm các phương pháp hiện được phân loại là các phương pháp học máy (machine learning), đặc trưng bởi hệ hình thức (formalism) và phân tích thống kê. Nó còn được biết với các tên Trí tuê nhân tạo biểu tượng, Trí tuê nhân tạo logic, Trí tuê nhân tạo ngăn nắp (neat AI) và Trí tuê nhân tạo cổ điển (Goodness Old Fashioned Artificial Intelligence). (Xem thêm ngữ nghĩa học.) Các phương pháp gồm có:

Trí tuệ tính toán nghiên cứu việc học hoặc phát triển lặp (ví dụ: tinh chỉnh tham số trong hệ thống, chẳng hạn hệ thống connectionist). Việc học dựa trên dữ liệu kinh nghiệm và có quan hệ với Trí tuệ nhân tạo phi ký hiệu, Trí tuê nhân tạo lộn xộn (scruffy AI) và tính toán mềm (soft computing). Các phương pháp chính gồm có:

Người ta đã nghiên cứu các hệ thống thông minh lai (hybrid intelligent system), trong đó kết hợp hai trường phái này. Các luật suy diễn của hệ chuyên gia có thể được sinh bởi mạng neural hoặc các luật dẫn xuất (production rule) từ việc học theo thống kê như trong kiến trúc ACT-R.

Các phương pháp trí tuệ nhân tạo thường được dùng trong các công trình nghiên cứu khoa học nhận thức (cognitive science), một ngành cố gắng tạo ra mô hình nhận thức của con người (việc này khác với các nghiên cứu Trí tuê nhân tạo, vì Trí tuê nhân tạo chỉ muốn tạo ra máy móc thực dụng, không phải tạo ra mô hình về hoạt động của bộ óc con người).

Bài chính Triết lý Trí tuệ nhân tạo

Trí tuệ nhân tạo mạnh hay Trí tuệ nhân tạo yếu, đó vẫn là một chủ đề tranh luận nóng hổi của các nhà triết học Trí tuệ nhân tạo. Nó liên quan tới philosophy of mind và mind-body problem. Đáng chú ý nhất là Roger Penrose trong tác phẩm The Emperor's New Mind và John Searle với thí nghiệm tư duy trong cuốn Chinese room (Căn phòng Trung Hoa) khẳng định rằng các hệ thống logic hình thức không thể đạt được nhận thức thực sự, trong khi Douglas Hofstadter trong Gödel, Escher, Bach và Daniel Dennett trong Consciousness Explained ủng hộ thuyết chức năng. Theo quan điểm của nhiều người ủng hộ Trí tuệ nhân tạo mạnh, nhận thức nhân tạo được coi là "chén thánh " của Trí tuệ nhân tạo.

Có nhiều ví dụ về các chương trình thể hiện trí thông minh ở một mức độ nào đó. Ví dụ:

Trên thế giới có rất nhiều các nhà nghiên cứu trí tuệ nhân tạo làm việc tại hàng trăm viện nghiên cứu và công ty. Dưới đây là một số trong nhiều nhà nghiên cứu đã có đóng góp lớn:

Sau khi nhà vật lý học Stephen Hawking và tỷ phú Elon Musk cảnh báo về mối đe dọa tiềm ẩn của trí tuệ nhân tạo, nhiều người vẫn cho rằng họ đã quá lo xa trong khi AI đang giúp ích rất nhiều cho cuộc sống của chúng ta. Stephen Hawking khẳng định "Trí tuệ nhân tạo có thể là dấu chấm hết cho nhân loại khi nó phát triển đến mức hoàn thiện nhất".[cần dẫn nguồn]

Tác động đầu tiên của trí tuệ nhân tạo mà chúng ta có thể dễ dàng nhận thấy chính là tỷ lệ thất nghiệp tăng cao. Nếu AI phát triển hoàn thiện, nó có khả năng thay thế con người trong các công việc trí tuệ như chăm sóc sức khỏe, phục vụ, sản xuất theo dây chuyền tự động, công việc văn phòng....[31] Hoặc cũng có thể vấn đề thất nghiệp sẽ được AI giải quyết một cách mà chúng ta không thể hình dung được.

Theo Bill Joy, người đồng sáng lập và Giám đốc khoa học của Sun Microsystems: "Có một vấn đề rất lớn đối với xã hội loài người khi AI trở nên phổ biến, đó là chúng ta sẽ bị lệ thuộc. Khi AI trở nên hoàn thiện và thông minh hơn, chúng ta sẽ cho phép mình nghe theo những quyết định của máy móc, vì đơn giản là các cỗ máy luôn đưa ra quyết định chính xác hơn con người."[31]

Theo Andrew Maynard, nhà vật lý và là người giám đốc Trung tâm nghiên cứu rủi ro khoa học tại đại học Michigan: "Khi AI kết hợp với công nghệ nano có thể là bước tiến đột phá của khoa học, nhưng cũng có thể là mối đe dọa lớn nhất đối với con người. Trong khi Bộ quốc phòng Mỹ đang nghiên cứu dự án Autonomous Tactical Robot (EATR), trong đó các robot sẽ sử dụng công nghệ nano để hấp thụ năng lượng bằng những chất hữu cơ có thể là cơ thể con người. Đó thực sự là mối đe dọa lớn nhất, khi các robot nano tự tạo ra năng lượng bằng cách ăn các chất hữu cơ từ cây cối và động vật, có thể là cả con người. Nghe có vẻ giống như trong các bộ phim viễn tưởng, nhưng đó là điều hoàn toàn có thể xảy ra. Có lẽ chúng ta nên bắt đầu cẩn thận ngay từ bây giờ."

Dưới đây là danh sách các cuốn sách (tiếng Anh) quan trọng trong ngành. Xem danh sách đầy đủ hơn tại Các ấn phẩm Trí tuệ nhân tạo quan trọng.

Wikimedia Commons có thêm hình ảnh và phương tiện truyền tải về

Dưới đây là danh sách 10 công nghệ trí tuệ nhân tạo hot nhất hiện nay.

1. Sản sinh ngôn ngữ tự nhiên (Natural language generation)

Máy móc xử lý và giao tiếp theo một cách khác với bộ não con người. Tạo ngôn ngữ tự nhiên là một công nghệ phổ biến giúp chuyển đổi dữ liệu có cấu trúc thành ngôn ngữ bản địa. Máy móc được lập trình với các thuật toán để chuyển đổi dữ liệu sang định dạng mong muốn của người dùng.

Ngôn ngữ tự nhiên là một nhánh của trí tuệ nhân tạo giúp các nhà phát triển nội dung tự động hóa nội dung và phân phối ở định dạng mong muốn. Các nhà phát triển nội dung có thể sử dụng nội dung được tự động hóa để quảng cáo trên các nền tảng mạng xã hội khác nhau và các nền tảng truyền thông khác để tiếp cận đối tượng mục tiêu.

Sự can thiệp của con người sẽ giảm đáng kể vì dữ liệu sẽ được chuyển đổi thành các định dạng mong muốn. Dữ liệu có thể được hiển thị dưới dạng biểu đồ, đồ thị…

2. Nhận dạng giọng nói (Speech recognition)

Nhận dạng giọng nói là một nhánh quan trọng khác của trí tuệ nhân tạo, chuyển đổi giọng nói của con người thành một định dạng hữu ích và có thể hiểu được bằng các ứng dụng máy tính. Công nghệ này là cầu nối tương tác giữa máy tính và con người. Ứng dụng Siri của iPhone là một ví dụ điển hình về nhận dạng giọng nói.

Trợ lý ảo (virtual agent) đã trở thành công cụ rất hữu ích đối với các nhà thiết kế hướng dẫn. Trợ lý ảo là một ứng dụng máy tính tương tác với con người. Các ứng dụng web và di động cung cấp tính năng chatbot hoạt động như các trợ lý dịch vụ khách hàng để tương tác với con người và trả lời các truy vấn của họ.

Trợ lý ảo Google (Google Assistant) giúp tổ chức các cuộc họp, trong khi Alexia - trợ lý ảo của Amazon giúp việc mua sắm của bạn trở nên dễ dàng hơn. Trợ lý ảo cũng hoạt động giống như một trợ lý ngôn ngữ, tùy theo sự lựa chọn và sở thích của bạn. Trợ lý ảo Watson của IBM có thể hiểu được các truy vấn dịch vụ khách hàng điển hình được hỏi theo nhiều cách khác nhau.

Bên cạnh đó, các trợ lý ảo cũng hoạt động như một phần mềm dưới dạng dịch vụ (SaaS) - mô hình phân phối dịch vụ ứng dụng phần mềm, trong đó nhà cung cấp không bán sản phẩm phần mềm mà bán dịch vụ dựa trên phần mềm đó.

4. Quản lý quyết định (Decision management)

Các công ty hiện nay đang triển khai các hệ thống quản lý quyết định để chuyển đổi và phân tích dữ liệu thành các mô hình dự đoán. Hệ thống quản lý quyết định được sử dụng để nhận thông tin cập nhật, sau đó tiến hành phân tích dữ liệu kinh doanh nhằm hỗ trợ quá trình ra quyết định của doanh nghiệp.

Quản lý quyết định giúp đưa ra quyết định nhanh chóng, tránh được những rủi ro, và tự động hóa quy trình ra quyết định. Hệ thống quản lý quyết định được triển khai rộng rãi trong lĩnh vực tài chính, y tế, thương mại, bảo hiểm, thương mại điện tử...

Sinh trắc học là phép đo và phân tích thống kê các đặc điểm sinh học và hành vi độc đáo của con người. Công nghệ này chủ yếu được sử dụng để nhận dạng và kiểm soát truy cập, hoặc để xác định các cá nhân thuộc diện bị giám sát.

Xác thực sinh trắc học (biometric authentication) ngày càng trở nên phổ biến trong các hệ thống an ninh công cộng và doanh nghiệp, điện tử tiêu dùng và các ứng dụng điểm bán lẻ POS. Ngoài vấn đề bảo mật, động lực thúc đẩy xác thực sinh trắc học là sự tiện lợi vì công nghệ này không yêu cầu phải nhớ mật khẩu khẩu hay mang theo mã thông báo bảo mật (security tokens).

Xác thực sinh trắc học thực hiện thông qua các dấu hiệu nhận diện như: dấu vân tay, dái tai, võng mạc, hình dạng bàn tay, khuôn mặt hoặc chữ ký bằng văn bản. Trong đó, dấu vân tay là loại xác thực sinh trắc học được sử dụng phổ biến và lâu đời nhất.

Học máy là một lĩnh vực của trí tuệ nhân tạo cho phép máy móc hiểu được các tập dữ liệu mà không cần được lập trình. Kỹ thuật học máy giúp các doanh nghiệp đưa ra những quyết định sáng suốt với các phân tích dữ liệu được thực hiện bằng thuật toán và mô hình thống kê.

Học máy được ứng dụng trong nhiều lĩnh vực khác nhau. Lĩnh vực chăm sóc sức khỏe và chuyên môn y tế cần các kỹ thuật học máy để phân tích dữ liệu bệnh nhân nhằm dự đoán bệnh và điều trị hiệu quả. Ngành tài chính ngân hàng cần học máy để phân tích dữ liệu khách hàng nhằm xác định và đề xuất các lựa chọn đầu tư cho khách hàng cũng như phòng ngừa rủi ro và lừa đảo. Các nhà bán lẻ sử dụng học máy để phân tích dữ liệu khách hàng, qua đó dự đoán được những thay đổi trong sở thích và hành vi của khách hàng.

7. Tự động hóa quy trình bằng robot (Robotic process automation)

Tự động hóa quy trình bằng robot (RPA) là một ứng dụng của trí tuệ nhân tạo giúp định cấu hình robot (ứng dụng phần mềm) để diễn giải, truyền đạt và phân tích dữ liệu. Công cụ AI này giúp tự động hóa một phần hoặc toàn bộ các hoạt động thủ công lặp đi lặp lại và theo quy luật.

8. Mạng ngang hàng (Peer-to-peer network)

Mạng ngang hàng giúp kết nối các hệ thống và máy tính khác nhau để chia sẻ dữ liệu mà không cần truyền dữ liệu qua máy chủ. Mạng ngang hàng có khả năng giải quyết các vấn đề phức tạp nhất. Công nghệ này được sử dụng trong tiền điện tử. Việc triển khai mạng ngang hàng giúp tiết kiệm chi phí vì các máy trạm (máy tính có hiệu năng cao hơn và cấu hình vượt trội hơn máy tính thông thường) riêng lẻ được kết nối mà không cần cài đặt các máy chủ.

9. Các nền tảng học sâu (Deep learning platforms)

Học sâu là một nhánh khác của trí tuệ nhân tạo hoạt động dựa trên các mạng nơ-ron nhân tạo (neural network), lấy cảm hứng từ bộ não con người. Học sâu giúp giải quyết những vấn đề phức tạp như cách mà bộ não con người vẫn làm, thông qua việc sử dụng nhiều thuật toán khác nhau.

Thuật ngữ “sâu” được đặt ra bởi vì tồn tại nhiều lớp ẩn trong các mạng nơ-ron. Thông thường, một mạng nơ-ron có 2-3 lớp ẩn và có thể có tối đa 150 lớp ẩn. Học sâu được dùng để đào tạo một mô hình và một đơn vị xử lý đồ họa dựa trên lượng dữ liệu khổng lồ. Các thuật toán hoạt động theo hệ thống phân cấp để tự động hóa các phân tích dự đoán.

Học sâu được ứng dụng rộng rãi trong nhiều lĩnh vực như hàng không vũ trụ và quân sự để phát hiện các vật thể thông qua vệ tinh, cải thiện an toàn lao động cho công nhân bằng cách xác định các sự cố rủi ro khi công nhân đến gần thiết bị máy móc, giúp phát hiện tế bào ung thư…

10. Phần cứng tối ưu hóa cho AI (AI-optimised hardware)

Giới kinh doanh hiện có nhu cầu cao về phần mềm trí tuệ nhân tạo. Khi sự chú ý dành cho phần mềm tăng lên, nhu cầu về phần cứng để hỗ trợ phần mềm cũng nảy sinh. Một con chip thông thường không thể hỗ trợ các mô hình trí tuệ nhân tạo, do đó một thế hệ chip trí tuệ nhân tạo mới đang được phát triển nhằm phục vụ các mạng nơ-ron, học sâu và thị giác máy tính (computer vision).

Phần cứng cho trí tuệ nhân tạo bao gồm CPU để xử lý khối lượng công việc ngày càng tăng, silicon tích hợp cho mục đích đặc biệt dành cho mạng nơ-ron, hay chip mô phỏng hệ thần kinh người... Các công ty như Nvidia, Qualcomm và AMD đang tạo ra những con chip có thể thực hiện các phép tính AI phức tạp. Chăm sóc sức khỏe và công nghiệp ô-tô có thể là những ngành sẽ được hưởng lợi từ loại chip này.